Some key insights from the article:

Basically, what they did was to look at how much batteries would be needed in a given area to provide constant power supply at least 97% of the time, and the calculate the costs of that solar+battery setup compared to coal and nuclear.

  • booly@sh.itjust.works
    link
    fedilink
    English
    arrow-up
    1
    ·
    edit-2
    1 month ago

    But the other misleading part is they looked at 20 years which is close to the life cycle for solar/batteries and not even half the life of nuclear

    I think Lazard’s LCOE methodology looks at the entire life cycle of the power plant, specific to that power plant. So they amortize solar startup/decommissioning costs across the 20 year life cycle of solar, but when calculating LCOE for nuclear, they spread the costs across the 80 year life cycle of a nuclear plant.

    Nuclear is just really, really expensive. Even if plants required no operating costs, the up front costs are so high that it represents a significant portion of the overall operating costs for any given year.

    The Vogtle debacle in Georgia cost $35 billion to add 2 MW 2GW (edit to fix error) of capacity. They’re now projecting that over the entire 75 year lifespan the cost of the electricity will come out to be about $0.17 to $0.18 per kilowatt hour.